Remarques importantes concernant les propriétés du produit matriciel

Les propriétés de la multiplication des nombres réels dans $\mathbb R$ ne s'appliquent pas forcément au produit matriciel.

Définition 26 (transposée).

Si $A \in M_{m \times n}(\mathbb{R})$, sa transposée $A^T \in M_{n \times m}(\mathbb{R})$ est la matrice définie par

$$(A^T)_{ij} = a_{ji}$$

pour tout $1 \le i \le n$ et $1 \le j \le m$. Autrement dit, A^T est la matrice dont les colonnes sont formées par les lignes de A.

Exemples

Théorème 15. Soient $A \in M_{m \times n}(\mathbb{R})$ et $B \in M_{n \times p}(\mathbb{R})$. On a

1.
$$(A^T)^T = A$$

$$2. (A+C)^T = A^T + C^T$$

$$\beta. \ (\lambda A)^T = \lambda A^T$$

$$4. (AB)^T = B^T A^T$$

Exemples

Preuve du théorème 15.4

Observation

Quelles sont les conditions pour qu'une matrice A soit égale à sa transposée A^T ?

Définition 27 (symétrique, anti-symétrique, diagonale). Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. On dit que

- 1. A est $sym\acute{e}trique$ si $A^T=A$
- 2. A est antisymétrique si $A^T = -A$
- 3. A est diagonale si $a_{ij} = 0$ pour tout $1 \le i, j \le n$ avec $i \ne j$.

Remarques

- 1. Pour les matrices carrées, on obtient la transposée en effectuant une symétrie par rapport à la diagonale principale sur les coefficients.
- 2. Pour toute une matrice antisymétrique A, les coefficients de la diagonale principale sont nuls.

Exemples

Théorème 16. Toute matrice $A \in M_{n \times n}(\mathbb{R})$ est la somme d'une matrice symétrique et d'une matrice anti-symétrique.

Preuve

Exemples

Puissances de matrices

Soit $A \in M_{n \times n}(\mathbb{R})$ et $k \in \mathbb{N}$. On définit

Exemples